Part Number Hot Search : 
SI4784 NH00M100 MODEL89 PL3223 TPS54332 37324 10001 1N370
Product Description
Full Text Search
 

To Download MRF140 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF140/D
The RF MOSFET Line
RF Power Field-Effect Transistor
N-Channel Enhancement-Mode
Designed primarily for linear large-signal output stages up to 150 MHz frequency range. * Specified 28 Volts, 30 MHz Characteristics Output Power = 150 Watts Power Gain = 15 dB (Typ) Efficiency = 40% (Typ) * Superior High Order IMD * IMD(d3) (150 W PEP) -- -30 dB (Typ) * IMD(d11) (150 W PEP) -- -60 dB (Typ) * 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
MRF140
150 W, to 150 MHz N-CHANNEL MOS LINEAR RF POWER FET
D
G S
CASE 211-11, STYLE 2
MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGO VGS ID PD Tstg TJ Value 65 65 40 16 300 1.7 -65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/C C C
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max 0.6 Unit C/W
NOTE -- CAUTION -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 9
1
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage (VGS = 0, ID = 100 mA) Zero Gate Voltage Drain Current (VDS = 28 Vdc, VGS = 0) Gate-Body Leakage Current (VGS = 20 Vdc, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 5.0 1.0 Vdc mAdc Adc
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) Drain-Source On-Voltage (VGS = 10 V, ID = 10 Adc) Forward Transconductance (VDS = 10 V, ID = 5.0 A) VGS(th) VDS(on) gfs 1.0 0.1 4.0 3.0 0.9 7.0 5.0 1.5 -- Vdc Vdc mhos
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 450 400 75 -- -- -- pF pF pF
FUNCTIONAL TESTS (SSB)
Common Source Amplifier Power Gain (VDD = 28 V, Pout = 150 W (PEP), IDQ = 250 mA) (30 MHz) (150 MHz) Gps -- -- -- 15 6.0 40 -- -- -- dB %
Drain Efficiency (VDD = 28 V, Pout = 150 W (PEP), f = 30; 30.001 MHz, ID (Max) = 6.5 A) Intermodulation Distortion (1) (VDD = 28 V, Pout = 150 W (PEP), f1 = 30 MHz, f2 = 30.001 MHz, IDQ = 250 mA) Load Mismatch (VDD = 28 V, Pout = 150 W (PEP), f = 30; 30.001 MHz, IDQ = 250 mA, VSWR 30:1 at all Phase Angles)
dB IMD(d3) IMD(d11) No Degradation in Output Power -- -- -30 -60 -- --
NOTE: 1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone. + BIAS 0-12 V+ 28 V RF OUTPUT
L1 C11 R4 C5 C6 C7 C4 DUT T2 C8
L2
C9
+ -
C10
R1 R3 C2 R2
RF INPUT
T1
C3 C12
C2, C5, C6, C7, C8, C9 -- 0.1 F Ceramic Chip or Monolythic with Short Leads C3 -- Arco 469 C4 -- 820 pF Unencapsulated Mica or Dipped Mica with Short Leads C10 -- 10 F/100 V Electrolytic C11 -- 1 F, 50 V, Tantalum C12 -- 330 pF, Dipped Mica (Short leads)
L1 -- VK200/4B Ferrite Choke or Equivalent, 3.0 H L2 -- Ferrite Bead(s), 2.0 H R1, R2 -- 51 /1.0 W Carbon R3 -- 1.0 /1.0 W Carbon or Parallel Two 2 , 1/2 W Resistors R4 -- 1 k/1/2 W Carbon T1 -- 16:1 Broadband Transformer T2 -- 1:25 Broadband Transformer
Figure 1. 30 MHz Test Circuit (Class AB)
REV 9
2
25 20 POWER GAIN (dB) 15 10 5 0 Pout , OUTPUT POWER (WATTS)
120 80 40 0 200 160 120 80 40 0 0 1 2 3 4 5 0 10 VDD = 28 V, IDQ = 250 mA 20
30
2
5
10
20
50
100
200
6
f, FREQUENCY (MHz)
Pin, INPUT POWER (WATTS)
Figure 2. Power Gain versus Frequency
Figure 3. Output Power versus Input Power
IMD, INTERMODULATION DISTORTION (dB)
-25 150 MHz -30 -35 -40 -45 -30 -35 -40 -45 -50 0 20 40 60 80 100 120 VDD = 28 V, IDQ = 250 mA, TONE SEPARATION = 1 kHz d3 d5
1000 f T, UNITY GAIN FREQUENCY (MHz) 800 600 400 200 0 VDS = 20 V
10 V
d5 140 160 Pout, OUTPUT POWER (WATTS PEP)
30 MHz
d3
0
5
10 ID, DRAIN CURRENT (AMPS)
15
20
Figure 4. IMD versus Pout
Figure 5. Common Source Unity Gain Frequency versus Drain Current
10 I DS, DRAIN CURRENT (AMPS) 8 6 4 2 0
VDS = 10 V gfs = 6 mhos
0
2 6 8 4 VGS, GATE-SOURCE VOLTAGE (VOLTS)
10
Figure 6. Gate Voltage versus Drain Current
REV 9
3
30 MHz
VDD = 28 V IDQ = 250mA Pout = 150 W (PEP)
150 MHz
200 160
150 Zin 50 30 30 7.0 f = 2.0 MHz 150 ZOL*
Zo = 10 Ohms 7.0 VDD = 28 V IDQ = 250 mA Pout = 150 W PEP f = 2.0 MHz ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency.
NOTE: Gate Shunted by 25 Ohms.
Figure 7. Series Equivalent Impedance
RFC1 + 28 V C10 + C11
BIAS 0-12 V
R1 C4 C5 + RFC1 DUT
L4
L3
L2
C9
RF INPUT
C1
L1 C6
RF OUTPUT
C2
C3
R2
D1
C7
C8
C1, C2, C8 -- Arco 463 or equivalent C3 -- 25 pF, Unelco C4 -- 0.1 F, Ceramic C5 -- 1.0 F, 15 WV Tantalum C6 -- 15 pF, Unelco J101 C7 -- 25 pF, Unelco J101 C9 -- Arco 262 or equivalent C10 -- 0.05 F, Ceramic C11 -- 15 F, 35 WV Electrolytic
L1 -- 3/4, #18 AWG into Hairpin L2 -- Printed Line, 0.200 x 0.500 L3 -- 7/8, #16 AWG into Hairpin L4 -- 2 Turns, #16 AWG, 5/16 ID RFC1 -- 5.6 H, Molded Choke RFC2 -- VK200-4B R1, R2 -- 150 , 1.0 W Carbon
Figure 8. 150 MHz Test Circuit (Class AB)
REV 9
4
AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A
f MHz 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 100 110 90 80 70 60 50 40 30 0.966 0.964 0.963 0.966 0.965 0.964 0.963 0.960 0.962 0.962 0.960 0.962 0.960 0.958 0.959 0.958 0.958 0.959 0.957 0.958 0.958 0.957 0.957 0.956 0.957 0.957 0.957 0.957 0.956 0.956 0.956 0.957 |S11| S11
5
REV 9
Table 1. Common Source S-Parameters (VDS = 28 V, ID = 5 A)
174 174 174 174 175 175 175 175 175 175 176 176 176 176 176 176 177 177 177 177 177 178 178 178 178 179 179 179 179 180 180 180
|S21|
0.18 0.16 0.18 0.18 0.20 0.19 0.20 0.20 0.21 0.21 0.24 0.24 0.28 0.27 0.27 0.30 0.31 0.34 0.36 0.37 0.41 0.43 0.48 0.55 0.58 0.64 0.73 0.86 1.00 1.17 1.46 1.88
S21
46 42 45 42 42 40 43 44 44 47 44 45 52 54 52 53 51 54 56 59 60 61 64 64 67 71 72 73 76 78 81 86
0.055 0.053 0.049 0.046 0.049 0.046 0.043 0.038 0.036 0.038 0.038 0.039 0.032 0.026 0.024 0.026 0.028 0.026 0.023 0.017 0.016 0.017 0.019 0.018 0.015 0.010 0.012 0.013 0.012 0.010 0.008 0.011 |S12|
S12
71 74 74 79 78 74 71 72 77 81 76 70 67 67 77 82 75 67 58 60 73 75 67 53 44 45 53 54 44 33 23 22
0.947 0.930 0.971 1.010 0.945 0.952 0.962 0.980 0.994 0.980 0.988 1.020 0.951 0.988 0.986 0.986 0.974 0.923 0.934 0.978 0.964 0.973 0.961 0.947 0.934 0.952 0.970 0.960 0.936 0.936 0.940 0.938 |S22|
S22
-178
169 170 170 172 170 170 172 173 175 175 171 172 175 177 176 175 175 176 178 179 178 178 177 176 178 180 179 177 177 179 179
AAAAA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAA A A A A A A A AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA A AA AA A
f MHz 500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 0.956 0.954 0.958 0.965 0.968 0.969 0.968 0.968 0.969 0.967 0.968 0.968 0.967 0.968 0.967 0.965 |S11|
6
REV 9
Table 1. Common Source S-Parameters (VDS = 28 V, ID = 5 A) continued
S11
170 170 170 171 171 171 171 172 172 172 172 173 173 173 173 174
|S21|
0.13 0.13 0.13 0.13 0.14 0.15 0.14 0.13 0.14 0.15 0.15 0.16 0.16 0.15 0.16 0.17
S21
35 37 40 41 48 45 47 45 43 44 42 45 41 43 43 43
0.070 0.041 0.017 0.046 0.076 0.087 0.086 0.078 0.070 0.070 0.069 0.068 0.065 0.063 0.061 0.059 |S12|
S12
113 115 75 73 74 68 65 68 72 77 72 70 70 74 74
74
1.040 1.050 1.050 0.980 0.971 0.981 0.953 0.980 0.986 1.000 0.957 0.970 0.952 1.010 1.010 0.964 |S22|
S22
162 163 162 163 163 166 166 166 164 165 170 168 168 167 167 169
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (Cgd), and gate-to-source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high -- on the order of 109 ohms -- resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th). Gate Voltage Rating -- Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination -- The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup. Gate Protection -- These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.
Cgd GATE
DRAIN Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd
Cds Cgs
SOURCE
LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors.
EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY
Collector Emitter Base V(BR)CES VCBO IC ICES IEBO VBE(on) VCE(sat) Cib Cob hfe RCE(sat) = ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... ............................... Drain Source Gate V(BR)DSS VDGO ID IDSS IGSS VGS(th) VDS(on) Ciss Coss gfs VDS(on) ID
VCE(sat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r DS(on) = IC
REV 9
7
PACKAGE DIMENSIONS
A U M
1
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
Q
M
4
R
B
2
3
D K J H C E
SEATING PLANE
DIM A B C D E H J K M Q R U
INCHES MIN MAX 0.960 0.990 0.465 0.510 0.229 0.275 0.216 0.235 0.084 0.110 0.144 0.178 0.003 0.007 0.435 --45 _NOM 0.115 0.130 0.246 0.255 0.720 0.730
MILLIMETERS MIN MAX 24.39 25.14 11.82 12.95 5.82 6.98 5.49 5.96 2.14 2.79 3.66 4.52 0.08 0.17 11.05 --45 _NOM 2.93 3.30 6.25 6.47 18.29 18.54
STYLE 2: PIN 1. 2. 3. 4.
SOURCE GATE SOURCE DRAIN
CASE 211-11 ISSUE N
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 9
8


▲Up To Search▲   

 
Price & Availability of MRF140

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X